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Abstract—The time response of the concentration or temperature boundary layer can have a significant

effect on measurements of the fluctuating velocity gradient made with wall heat transfer or mass transfer

probes. This paper analyzes this effect by carrying out finite difference solutions for a scalar boundary

layer under the influence of a harmonic oscillation in the velocity field. The principal assumptions used

in the calculations are that the fluctuating scalar field is described by a linearized form of the conservation

equation and that the velocity varies linearly with distance from the wall. The frequency response improves
with decreasing Schmidt number or Prandtl number.

NOMENCLATURE

correction factor for the pseudo steady
state solution, defined by equation (26);
coefficient of f, profile, equation (19);
diameter of circular transfer element;
temperature or concentration;

bulk temperature or bulk concentration;
average of F;

fluctuating component of F, equation (4);
amplitude of f fluctuation;
dimensionless f = f(5/8);

real part of f, ;

imaginary part of f; ;

pseudo steady state approximation for
Jis

=fi = [/l

mass transfer coefficient for the probe;
average value of K;

fluctuating component of K;

average value of k?;

length of transfer element;

normalized length of the transfer element
= L{u*/v);

frequency in cycles pers:

Schmidt number or Prandtl number;
velocity gradient at the wall;

average velocity gradient at the wall;
fluctuating component of S, equation (3);
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average value of s2;

time;

axial velocity;

friction velocity;

spectral density function for s7;

spectral density function for k?;

distance in flow direction along the
transfer element;

= x{u*/v):

distance perpendicular to the wall;

diffusivity for mass or heat;

parameter appearing in equation (12);
scalar boundary layer thickness;

= S (u*/v);

= phase lag of (3f*/0y*),s with s;

= kinematic viscosity;

= 27n;

, = w(u*?/V) N*.

1. INTRODUCTION

WALL Mass transfer probes and heat transfer
probes [6-8] have been used in a number of
recent investigations to study the fluctuations
in the velocity gradient at a wall. One of the chief
difficulties in interpreting these measurements
has been the need to correct for the frequency
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response of the concentration or temperature
boundary layer. This paper presents a solution
to this problem.

The principal assumptions used in the analysis
are that the fluctuating scalar field is described
by a linearized form of the conservation equation
and that the velocity varies linearly with distance
from the wall throughout the scalar boundary
layer. The solution that is presented is obtained
by finite difference approximations. This
approach had been used by Mitchell and
Hanratty [3] However, instabilities in their
numerical techniques limited the range of appli-
cability of their results to low frequencies. We
have been able to overcome the difficulties
experienced by Mitchell and Hanratty and
therefore, can present results for the entire
frequency range. The numerical integration
agrees with the asymptotic solutions outlined
by Lighthill [9] and by Bellhouse and Schultz
[7] for high frequencies and for low frequencies.
The general mathematical approach is similar
to that used by Fagella—Alabastro and Hellums
[10] in their study on diffusion in pulsating flow.

2. DEFINING EQUATIONS

Consider a rectangular transfer element em-
bedded flush with a solid wall with its long side
perpendicular to the direction of mean flow. In
this configuration the rate of transfer will not be
sensitive to velocity fluctuations in the transverse
direction [11]. The length of the element is
designated by L and the width is large enough
that diffusion in the transverse direction can be
neglected. We consider situations such that

u*?1?

Vo

< 5000

so that diffusion in the direction of mean flow
can also be neglected [12]. The thickness of the
scalar boundary layer is assumed to be thin
enough that velocities normal to the surface
can be neglected and the velocity field is given as

U=>5y (1)

where S is the velocity gradient at the wall
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If we let F designate either a temperature or a
concentration, the conservation equation is

oF oF *F

Here x is the direction of mean flow, y the distance
perpendicular to the wall and o the diffusivity.
Equation (2) is to be solved using boundary
conditions

F(x,0,t) =0 0<x<L 3)
F(x,@,t):F(O,y,t):Fb.

Define F and S as the sum of a time averaged
term and a fluctuating term.

F=F+f
S=5+s. @)

We obtain equations for F and f by substituting
(4) into (2) and neglecting second order terms in
the fluctuating components.

_ OF J’F
Sy5; =0 e (3)
of . of oF 0*f
=+ Sy~ =
a e TV = (©)
The boundary conditions for (5) and (6) are
Fix,00 =fx,0,)=0 0<x<L
F(x. ) = F0,y) =F, (7)

f(xs 0, t) :f(0~ Y t) =0
The solution to (5) is given by Reiss [2] as

n

Lje-ﬂ dz )

Sy

G

S el 1Y
"=y<@> =N <9x+>

and N is the Schmidt number or Prandtl number,
y™ and x* distances made dimensionless with
respect to wall parameters u* and v.

We seek a solution for the fluctuating scalar
field for a harmonic variation of s

s = et )]

where

e
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where § and w are real numbers. Since the equa-
tion for f'is linear,

f=Fe (10)

where f'can be a complex number. The following
equation is obtained for
S
f 1= f a
3
by substituting (9} and (10) into (6).
« + oF &% o

*
lw fl + y a ot y ax = 6}’*2 (11)
where
y*=y'N?
and
(0237
w* = u_*i 3

3. HIGH FRFQUENCY AND LOW FREQUENCY
SOLUTIONS

Lighthill [9] has argued that the term

o
* 1
Y ox*

can be neglected at high frequencies (w*3), a
large number). Using this simplification (11)
can be integrated to give

28 exp [ — /(iw*) y*]

fi=

w*x+%
2
T o ts exp(—1°)
By*?
ot exp (—1°) (12)
and
a9
e =0
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where
Fy
3y orr*

Again, following the analysis outlined by
Lighthill [9] a low frequency solution (w*3;, a
small number) can be obtained by using the
following approximation

fi =1 + i0*f

B =

(14)

where we call f; the pseudo-steady state approxi-
mation. The following equation for £, and f, are
obtained by substituting (14) into (11} and
assuming that «* is a small number

afs N aF *f,

— = 15
) i
L4yt afi = 5yfi (16)

Equations (15) and (16) are to be solved for the

conditions of £, and f, being zero at the wall and

at large distances from the wall. The solution
to (15) is

oF 1 , oF

g = yR

Li=s55=3""5

We seek an approximate solution to (16) by
using the integral form of the conservation
equation

(7

g d * *
(gy-)o dxj £, dy* +§fsdy. (18)
0 0

The following relation satisfies the conditions
that f, and its second derivative are zero at the
wall and that f, and its first and second deriva-
tives are zero at large distances from the wall

oF

f2 = Bx+§y* W (19)

By substituting (19) and (8) into (18) we calculate
that

B = 0210. (20)
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We therefore obtain the following relation for Values of
low frequencies ( @‘l)
a . ¥/
(ﬁ) = —{3— — iw* (0°610) px 1. 21 V/mso
V) poo X were determined as a function of x* for different

w*. These agree with the asymptotic solutions
outlined in the previous section for high and low
frequencies. Figures 1 and 2 give a comparison

1 . - -
4 ‘NUM“RK_?AL RESULTS for x* = 2:54 of the amplitude of the sinusoidal
The numerical solution for {11) was obtained  variation of

by using the Crank—Nicholson six point implicit ( o, )
=0

method [ 13]. The mesh sizes in both the x™ and oy

y* directions were varied in order to check the

accuracy of the calculations. and of its lag with s.
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FiG. 1. Amplitude of the sinusoidal variation of the fluctuating
velocity gradient.
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Fic. 2. Phase lag of concentration gradient (3f,/0y*)y* = 0
with velocity gradient s.

The transfer coefficient describing the rate of
transfer to the surface of the probe, K, is given as

1

=) (5.0

0

22)

This can be defined as the sum of a time averaged
and a fluctuating component, K = K + k, where

3 aZS)*
K- W(“z‘ : @3)

If a pseudo-steady state solution is used to
describe the fluctuating concentration field, the
instantaneous value of k is related to the instan-
taneous value of s through the equation

k1

K 3

(24)

Ll @

and the mean-squared value of k is given as

Is

ol

(25)
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We follow the formulation of Mitchell and ko of,
Hanratty [ 3] in using the results of the numerical S A dx*
. ; - . dy
integration of (11). Since the fluctuating concen- H femg
tration field is related to the fluctuating velocity A =15 27N
gradient at the wall through a linear equation, o, .
the spectral density function for s?. W,, can be ay* dx
0 »=0
100~ ¥ T T T T T T T T .
B t*:10-50 ]
i te2.54 i
- -
«:3 tt=160
§ o =100 B
5T ]
s L ]
S B tr =050 7
t*<020
i / ! {
o1 i 10
Dimensioniess frequency , w®
Fi. 3. Correction factor for pseudo-steady state solution.
related to the spectral density function for K W,, where
by the equation ) |’ _ (afm)z N ( %)2 28)
5 W, oy* oy* oy*
We=9%%ip (26)  and

where the factor 42 is a function of frequency. It
may be regarded as a correction to the pseudo-
steady state solution and is therefore equal to
unity at low frequencies. The factor A4 is related to
the numerical solution for f; in the following way

fir = real part of f;
fi; = imaginary partof f, .
Calculated values of 142 are shown in Fig 3

as functions of L' and w* It is found that the
result reported by Mitchell and Hanratty [3]
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1
2 _
T 14+ 0060 (L) ow*?

is correct only if L*fw*? < S,

The application of these results to determine
W, from a wall mass transfer probe is illustrated
in Fig. 4. The data were obtained for a Reynolds
number of 24 500 with a 1 in. pipe [5]. The probe
was of circular shape of diameter D = 0004 in.
and the diffusivity and kinematic viscosity
characterizing the system are o = 84 x 107°
cm?/sandv = 0-89 x 10~ % cm?/s. The measured
spectral density function of the mass transfer

29
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fluctuations is plotted as 9 W, /K2 This would
correspond to the pseudo-steady state approxi-
mation for W,/§2 The dashed line in Fig. 4 is
the calculated curve for W,/3? after the frequency
response of the scalar boundary layer has been
taken into account using Fig. 3. The scaled
turbulence intensity ( §%52). which is the area
under the curve after correction, is
2

\/% = 0349, (30)
The pseudo-steady state result, equation (24),
yields a turbulence intensity of 0302, which is

T T T T T T T TTTTT] T T TTTH
i ]
30-3:— —]
- \ w,/ $° E
— \ 5 —
~ a / B
i » A .
N \\
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121 — —
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3 [ oz
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1 e
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FiG. 4. Spectral density of fluctuation.
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the area under the uncorrected curve. The
correction for the circular electrode was ob-
tained by integrating the corrected signal
over all the electrode surface, thus taking into
account the variation of the length, L, in the
direction of flow. This correction is shown in
detail in [5]. It is not much different from
assuming a rectangular electrode with an effec-
tive length of 0-82 D [2].

5. COMPARISON OF MASS TRANSFER PROBES
AND HEAT TRANSFER PROBES

It is of interest to compare the frequency
response of a thermal wall probe with a mass
transfer probe in an aqueous system. Mass
transfer probes have involved systems with large
Schmidt numbers, 1000-3000. For water a
thermal probe would be characterized with a
Prandtl number of about 5. From Fig. 3 we see
that the range of frequencies over which correc-
tions have to be made depends on the Schmidt
number or Prandtl number. For example, if
we used a probe with an " = 1'6 a 10 per cent
correction would have to be made when
w* = 09 Since w* varies directly with the
one third power of the Schmidt number or the
Prandil number, the frequency at which this
correction need be made is (2000/5)* times
greater for the thermal probe than for the mass
transfer probe. We conclude that in general
thermal probes have a better frequency response
than mass transfer probes. This arises because
probes with smaller Schmidt numbers or Prandtl
numbers have thicker scalar boundary layers
and therefore see large convective velocities.

However this increase in the boundary layer
thickness sometimes places severe restrictions
on the size of the probe required so that the
approximation of the velocity field by a linear
relation is valid. Define a thickness of the scalar
boundary layer §, as the distance from the wall
where F,. From (8) it follows that

GILEAD FORTUNA and T. J. HANRATTY

(31)

If the probe is to be used to measure turbulent
velocities close to a wall, it is desirable that
o, > 1.For amass transfer probe with N = 2000
this is satisfied even for very long probes. How-
ever, for a thermal probe with N = 5, it would
be necessary to use probes with Lt < 0-20.
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REPONSE EN FREQUENCE DE LA COUCHE LIMITE THERMIQUE SUR LES PAROIS DE
SONDES

Résumé— La réponse dans le temps de couche limite de concentration ou de température peut avoir un

effet significatif sur des mesures de gradient fluctuant de vitesse & I'aide du transfert de chaleur ou de masse

sur des sondes. Cet article analyse cet effet en dégageant les solutions aux différences finies pour une couche

limite sous 'influence d'une oscillation harmonique du champ des vitesses. Les hypothéses principales

formulées sont que le champ scalaire fluctuant est décrit par une forme linéarisée de I’équation de conser-

vation et que la vitesse varie linéairement avec la distance 4 la paroi. La résponse en fréquence s’améliore
quand le nombre de Prandt] ou de Schmidt diminue.

FREQUENZREAKTION DER GRENZSCHICHT AUF SONDEN FUR
UBERGANGSMESSUNGEN

Zusammenfassung—Die Zeitabhingigkeit von Temperatur-odex Konzentrationsgrenzschichten kann einen
besonderen Einfluss auf Messungen des Fluktuationsgeschwindigkeitsgradienten haben, bei Verwendung
von Messonden fiir die Wand-Wirmeiibertragung oder- Stoffiibertragung. In der vorliegenden Arbeit
wird dieser Effekt mit einem endlichen Differenzenverfahren fiir eine skalare Grenzschicht unter der Ein-
wirkung harmonischer Schwingungen auf das Geschwindigkeitsfeld untersucht. Bei der Untersuchung
wurde die grundlegende Annahme getroffen, dass das Fluktuations-Skalar-Feld durch eine linearisierte
Form der Kontinuititsgleichung beschrieben werden kann und dass sich die Geschwindigkeit linear mit
dem Wandabstand #ndert. Die Frequenz-Reaktion verfeinert sich mit abnehmender Schmidt-bzw.
Prandtl-Zahl.

YACTOTHAA XAPAHTEPUCTHHRA HNOI'PAHHUYHOIO CJIOHA HA
CTEHHE JATYUHOB TEIJIO-U MACCOIEPEHOCA

Anuotanna—IlocToAHHAA BpeMeHH KOHLEHTPALMORHOT0 WM TEMIIEPATYPHOFO HOTPAaHMYHOI'C
CJIOA MOKET OKA3BBATh BHAYMTEJILHOE BIIMAHME HA M3MEpeHUA IyJbcauuil rpaaMeHra CKo-
pOCTH HA CTeHKe [ATYMKOB TEIJIO-MJIM MacconepeHoca. B manHo# cTarpe aror addexr
aHANTMBUPYETCA NYTEM NPOBEJEHMA peuleHui B KOHEYHHIX DPa3HOCTAX [JIA CHAJAPHOTO
NOTPAHHYHOTO CJIOA € HAJOMEHMEM PapMOHMYeCKOTo Kojefanmsa ckopocrHoro moas. Ilpu
pacuére geaauuch NPUHOMINANBHEE AONYUISHAA, 3aKTIOYAI0IMecH B TOM, UTO Y IbCUPYIOLee
CKAJADHOe NOJie ONMCHIBAETCA JMHEADM3OBAHHBLIM YPABHEHUEM COXPAHEHHA, & CKOPOCTH
U3MEHAETCA JUWHEHHO C PAacCTOAHMEM OT CTeHKH. JacTOTHAA XapaKTepHCTUKA YIY4lIaeTcs
¢ ymenbuiennem 4uciaa [Imupra wau wucna Hpaunras.
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