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Abstract-The time response of the concentration or temperature boundary layer can have a significant 
effect on measurements of the fluctuating velocity gradient made with wall heat transfer or mass transfer 
probes. This paper analyzes this effect by carrying out finite difference solutions for a scalar boundary 
layer under the influence of a harmonic oscillation in the velocity field. The principal assumptions used 
in the calculations am that the fluctuating scalar field is described by a linearized form of the conservation 
eauation and that the velocitv varies linearlv with distance from the wail. The freouencv response improves 

‘ 

with decreasing Schmidt number at Prandtl number. _ _ _ 

NOMENCLATURti 

correction factor for the pseudo steady 
state solution, defined by equation (26) ; 
coefficient of fi profile, equation (19); 
diameter of circular transfer element ; 
temperature or concentration ; 
bulk temperature or bulk concentration; 
average of F ; 
~uctuating component of F, equation (4) ; 
amplitude off fluctuation; 
dimensionless J‘ = j(S/S) ; 
real part offi ; 
imaginary part offi ; 
pseudo steady state approximation for 

fi ; 
=_fi -L/i,.; 
mass transfer coefficient for the probe ; 
average value of X ; 
fluctuating component of K ; 
average value of k2 ; 
length of transfer element ; 
normalized length of the transfer element 
= I&*/v) ; 
frequency in cycles per s; 
Schmidt number or Prandtl number ; 
velocity gradient at the wall ; 
average velocity gradient at the wall ; 
fluctuating component of S, equation (3) ; 

average value of s2 ; 
time ; 
axial velocity; 
friction velocity; 
spectral density function for sz; 
spectral density function for i? ; 
distance in flow direction along the 
transfer element ; 
= x(u*/v); 
distance perpendicular to the wall ; 
= y(u*/v); 
= y+N+, 

diffusivity for mass or heat; 
parameter appearing in equation (12); 
scalar boundary layer thickness; 
= G,(u*/v) ; 
= phase lag of (~Tf*/8y*),.,~ with s ; 
= kinematic viscosity; 
= 2xn; 
= a(u*2fv) N+. 

1. INTRODUCTION 

MASS transfer probes and heat transfer 
probes [6-S] have been used in a number of 
recent investigations to study the fluctuations 
in the velocity gradient at a wall. One of the chief 
difficulties in interpreting these measurements 
has been the need to correct for the frequency 
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response of the concentration or temperature 
boundary layer. This paper presents a solution 
to this problem. 

The principal assumptions used in the analysis 
are that the fluctuating scalar field is described 
by a linearized form of the conservation equation 
and that the velocity varies linearly with distance 
from the wall throughout the scalar boundary 
layer. The solution that is presented is obtained 
by finite difference approximations. This 
approach had been used by Mitchell and 
Hanratty [3]. However, instabilities in their 
numerical techniques limited the range of appli- 
cability of their results to low frequencies. We 
have been able to overcome the difficulties 
experienced by Mitchell and Hanratty and 
therefore, can present results for the entire 
frequency range. The numerical integration 
agrees with the asymptotic solutions outlined 
by Lighthill [9] and by Bellhouse and Schultz 
[7J for high frequencies and for low frequencies. 
The general mathematical approach is similar 
to that used by Fagella-Alabastro and Hellums 
[ 101 in their study on diffusion in pulsating flow. 

2. DEFINING EQUATIONS 

Consider a rectangular transfer element em- 
bedded flush with a solid wall with its long side 
perpendicular to the direction of mean flow. In 
this configuration the rate of transfer will not be 
sensitive to velocity fluctuations in the transverse 
direction [ll]. The length of the element is 
designated by Land the width is large enough 
that diffusion in the transverse direction can be 
neglected. We consider situations such that 

u*2L2 
---<5ooo 

VU. 

so that diffusion in the direction of mean flow 
can also be neglected [12]. The thickness of the 
scalar boundary layer is assumed to be thin 
enough that velocities normal to the surface 
can be neglected and the velocity field is given as 

u = sy (1) 

where S is the velocity gradient at the wall. 

If we let F designate either a temperature or a 
concentration, the conservation equation is 

Here x is the direction of mean flow. y the distance 
perpendicular to the wall and c1 the diffusivity. 
Equation (2) is to be solved using boundary 
conditions 

F(x. 0. t) = 0 O<x<L 
F(x, co, t) = F(0. y, t) = F,. (3) 

Define F and S as the sum of a time averaged 
term and a fluctuating term. 

F=F+f 
s=s+s. (4) 

We obtain equations for F andfby substituting 
(4) into (2) and neglecting second order terms in 
the fluctuating components. 

(5) 

-+Sy-+"yai;ya~. af - af 
at ax ax ay2 

(6) 

The boundary conditions for (5) and (6) are 

P(x. 0) = Ax. 0, t) = 0 O<x<L 

P(x. co) = F(O, y) = F, (7) 

f(x. co. t) = j@, y. t) = 0. 

The solution to (5) is given by Reiss [2] as 

-Z3dz 
(8) 

where 

and N is the Schmidt number or Prandtl number, 
yf and xf distances made dimensionless with 
respect to wall parameters a* and v. 

We seek a solution for the fluctuating scalar 
field for a harmonic variation of s 

s = 3eio’ (9) 
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where $ and w are real numbers. Since the equa- where 
tion forfis linear, 

f =feiO* (10) 

Fb 
p = (3) (9)“P 

Again, following the analysis outlined by 
wherej‘can be a complex number. The following Lighthill [9] a low frequency solution (w*$, a 
equation is obtained for small number) can be obtained by using the 

fi =3; 
following approximation 

fi = f, + iw*f2 (14) 

by substituting (9) and (IO) into (6). 

a!, aP d2f, 
ico*fl + Yap + y*= = - 

f3y*2 (11) 

where 

and 

y* = y+N* 

3. HIGH FREQUENCY AND LOW FREQUENCY 
SOLUTIONS 

Lighthill [9] has argued that the term 

af, 
Y* dx+ 

can be neglected at high frequencies (o*S,‘, a 
large number). Using this simplification (11) 
can be integrated to give 

fi =x exp [ - J(iw*) y*] 
@*.&+4 

28 
-o*2XfS exp (-r3) 

+ BY*2 
im*x+3 exp ( -v3) (12) 

and 

afl 2P 
ay* = --J’ x++o*+ (13) 

where we call f, the pseudo-steady state approxi- 
mation. The following equation for f, and f2 are 
obtained by substituting (14) into (11) and 
assuming that w* is a small number 

a! aF a2f, 
y*g+y*x+=ay*2 

i.+y*$$+j 

(15) 

(16) 

Equations (15) and (16) are to be solved for the 
conditions off, and f2 being zero at the wall and 
at large distances from the wall. The sohrtion 
to (15) is 

f,+;y*g (17) 

We seek an approximate solution to (16) by 
using the integral form of the conservation 
equation 

m m 

~~),_=o = &+*f&* + Jf,dy*. (18) 

0 0 

The following relation satisfies the conditions 
that f2 and its second derivative are zero at the 
wall and that fz and its first and second deriva- 
tives are zero at large distances from the wall 

f2 ‘- Bx++y*$. (19) 

By substituting (19) and (8) into (18) we calculate 
that 

B = O-210. (20) 
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We therefore obtain the following relation for Values of 
low frequencies & -~ 

if, 
i 1 

B 
$7 =x+g - iw* (@6fOj /3x* 4. i.21) 

i i i?y* :* = 0 
r-0 were determined as a function of .x’ for different 

CO*. These agree with the asymptotic solutions 
outlined in the previous section for high and low 

4. NUMERICAL RESULTS 
frequencies, Figures 1 and 2 give a comparison 
for xi = 2.54 of the amplitude of the sinusoidal 

The numerical solution for (11) was obtained variation of 
by using the Crank-Nicholson six point imphcit 
method [13]. The mesh sizes in both the x’ and 

31 

y* directions were varied in order to check the (U aY* F = 0 

accuracy of the calculations. and of its lag with s. 

f /-Theoretical, low frequency 

t- I 

Theoretal, high frequency 

Dmensiooless frequency) W* 
FIG. 1. Amplitude of the sinusoidal variation of the fluctuatrng 

velocity gradient. 
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X+= 2.54 

Theoretical high 
frequency 

l Numerical solution 

Dimensionless frequency, 0 + 

FIG. 2. Phase lag of concentration gradient (3fi!dy*)y* = 0 

with velocity gradient s. 

The transfer coefficient describing the rate of If a pseudo-steady state solution is used to 
transfer to the surface of the probe, I(, is given as describe the fluctuating concentration field, the 

t instantaneous value of k is related to the instan- 
taneous value of s through K=;&~)yzod[;). (2’4 k Is 

the equation 

---- 
0 R-3$ (24) 

This can be defined as the sum of a time averaged 
and a ~uctuating component. K = R + k, where and the mean-squared value of k is given as 

(23) 
k 12 -=-- 

R2 9sz 
(25) 
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We follow the formuIatjon of Mitchell and l.‘ 

Wanratty [3] in using the results of the numerical 
% 

Sl-1 ay* 
dx’ 

integration of (11). Since the fluctuating concen- 0 f-Q 
tration held is related to the fluctuating vefocity A = L+ 
gradient at the wall through a lin_ear equation, 
the spectral density function for s2. W,, can be 

SI I 

af, &+ 

ay* 

1271 

0 P=O 

I 

Dimensionless frequency , w l 

FIG. 3. Correction factor for pseudo-steady state solution. 

related to the spectral density function for k?, W,, where 
by the equation 

w = 9 z -5 

(28) 

s 
K2 A? 

(24) and 

where the factor A2 is a function of frequency. It ft R = real part off, 

may be regarded as a correction to the pseudo- fi, = imaginary part of fi . 

steady state solution and is therefore equal to Calculated values of f/A2 are shown in Fig 3 
unity at low frequencies. The factor A is related to as functions of I? and w*. It is found that the 
the numerical solution forf, in the following way result reported by Mitchell and Hanratty [3] 



FREQUENCY RESPONSE OF THE BOUNDARY LAYER 1505 

I I A 2= 
1 

1 + 0.060 (L+)%P2 (29) 

is correct only if L+%D*~ G 5. 
The application of these results to determine 

W, from a wall mass transfer probe is illustrated 
in Fig 4. The data were obtained for a Reynolds 
number of 24 500 with a 1 in. pipe [S]. The probe 
was of circular shape of diameter D = OQO4 in. 
and the diffusivity and kinematic viscosity 
characterizing the system are a = 8.4 x 10e6 
cm2 Js and v = O-89 x 1 O- 2 cm’js. The measured 
spectral density function of the mass transfer 

fluctuations is plotted as 9 WdK2. This would 
correspond to the pseudo-steady state approxi- 
mation for Wjs2. The dashed line in Fig. 4 is 
the calculated curve for WAS2 after the frequency 
response of the scalar boundary layer has been 
taken into account using Fig. 3. The scaled 
turbulence intensity ( S2/S2). which is the area 
under the curve after correction, is 

4; = 0349. (30) 

The pseudo-steady state result, equation (24), 
yields a turbulence intensity of 0,302, which is 

Schmidt No. 1060 
Reynolds No. 24500 

lin. Pipe 

0,004in. Circular electrode 

[J,” #d&O 

[ irn + dn]‘: 0, 

lO-71 I I1111//1 I Illlllil I I IllIll 

IO 100 1000 
n, CPS 

FIG. 4. Spectral density of fluctuation. 
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the area under the uncorrected curve. The 
correction for the circular electrode was ob- 
tained by integrating the corrected signal 
over all the electrode surface, thus taking into 
account the variation of the length, L.. in the 
direction of flow. This correction is shown in 
detail in [S]. It is not much different from 
assuming a rectangular electrode with an effec- 
tive length of OX? D [2j. 

5. COMPARISON OF MASS TRANSFER PROBES 
AND NEAT RANSOM PROBES 

It is of interest to compare the frequency 
response of a thermal wall probe with a mass 
transfer probe in an aqueous system. Mass 
transfer probes have involved systems with large 
Schmidt numbers, 1000-3000. For water a 
thermal probe would be characterized with a 
Prandtl number of about 5. From Fig. 3 we see 
that the range of frequencies over which correc- 
tions have to be made depends on the Schmidt 
number or Prandtl number. For example, if 
we used a probe with an L+ = 1.6 a 10 per cent 
correction would have to be made when 
to* = 09. Since w* varies directly with the 
one third power of the Schmidt number or the 
Prandtl number. the frequency at whioh this 
correction need be made is (20005)” times 
greater for the thermal probe than for the mass 
transfer probe. We conclude that in general 
thermal probes have a better frequency response 
than mass transfer probes. This arises because 
probes with smaller Schmidt numbers or Prandtf 
numbers have thicker scalar boundary layers 
and therefore see large convective velocities. 

However this increase in the boundary layer 
thickness sometimes places severe restrictions 
on the size of the probe required so that the 
approximation of the velocity field by a linear 
relation is valid. Define a thickness of the scalar 
boundary layer 6, as the distance from the wall 
where F,. From (8) it follows that 

(311 

If the probe is to be used to measure turbulent 
velocities close to a wall, it is desirable that 
8: > 1. For a mass transfer probe with N = 2000 
this is satisfied even for very long probes. How- 
ever, for a thermal probe with N = 5, it would 
be necessary to use probes with L’ < 020. 
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REPONSE EN FREQUENCE DE LA COUCHE LIMITE THERMlQUE SUR LES PAROlS DE 
SONDES 

RCnme- Ld reponse dans le temps de couche limite de concentration ou de temperature peut avoir un 
effet signifi~atif sur des mesures de gradient fluctuant de vitesse a l’aide du transfert de chaleur ou de masse 
sur des sondes. Cet article analyse cet effet en dtgageant les solutions aux differences linies pour une couche 
limite sous I‘inlluence d’une oscillation harmonique du champ des vitesses. Les hypotheses principales 
formulees sent que le champ scalaire fluctuant est dtcrit par une forme lineari& de I’tquation de conser- 
vation et que la vitesse varie lineairement avec la distance a la paroi. La response en frequence s’ameliore 

quand le nombre de Prandtl ou de Schmidt diminue. 

FREQUENZREAKTION DER GRENZSCHICHT AUF SONDEN FUR 
UBERGANGSMESSUNGEN 

Zusammenfasaung-Die Zeitabhlngigkeit von Temperatur-oder Konzen trationsgrenzschichten kann einen 
besonderen Einfluss auf Messungen des Fluktuationsgeschwindigkeitsgradienten haben, bei Verwenduna 
von Messonden fur die Wand-Warmetibertragung oder Stoffiibertragung. In der vorliegenden Arbeit 
wird dieser Effekt mit einem endlichen Differen~nverfahren fur eine skalare Grenzschicht unter der Ein- 
wirkung harmonischer Schwingungen auf das Geschwindigkeitsfeld untersucht. Rei der Untersu~hung 
wurde die grundlegende Annahme getroffen, dass das Fluktuations-Skalar-Feld durch eine linearisierte 
Form der Kontinuitltsgleichung beschrieben werden kann und dass sich die Geschwindigkeit linear mit 
dem Wandabstand Indert. Die Frequenz-Reaktion verfeinert sich mit abnehmender Schmidt-bzw. 

Prandtl-Zahl. 

~*~CTOTHAH X~PA~TEP~CT~HA ~OrPAH~~HOrO CJIOH HA 
CTEHHE JJATrH4HOB TEHJIO-I/I MACCO~EPEHOCA 

~HHOT~~~~-~OCTOXHHaKBpeM~HllKOH~eHTpa~lClOHHOrOMJIHTeM~~~aTypHOrO~Orp3HH~HOrO 

CJIOfl MOHieT OK33bIBaTb 3HaYI4TeJIbHOe BJIEfRHI4e Ha M3MepeHMR nyJlbCaI@ rpa@feHTa CKO- 

pOCTH Ha CTeHKe HaT%iKOB TelLTO-HJIM MaCCOIIepeHOCa. B AaHHOZt CTaTbe 3TOT Bi$@eKT 

aKanw3sipyeTcn II~T~~M nposenefw perueHd B KoKevHbIx pa3HocTRx fi.wi cKajrffpKor0 

~OrpaH~YHOrO CJIOR C Ha~O~eH~eM rapMOH~YeCKOr0 KO~e6aK~~ CKOpOCTHOrO IIOJDI. npM 

paCr~TeAeJ?anMCbnplrH~anilanbHneAOny~eH~~,33Kn~salo~~eCtrBTOI,9TOnynbC~pyIo~ee 

CKaJIHpHOe JIOJIe OiIACbIBaeTCR JIRHeapR30BaHHbIM ypaBHeHPieM COXpaHeKHFI, a CKOpOCTb 

A3MeHHeTCR JIilHetiHO C paCCTORHHeM OT CTeHKR. YaCTOTHafl XapaKTepHCTHKa yJIyWIIaeTCfi 


